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Abstract. The eigenvalues of the homogeneous Fredholm integral equation, whose kernel 
is a sin2 x/x2 function, are shown to be non-degenerate. An upper bound for the largest 
eigenvalue is established and an approximate formula for evaluating the eigenvalues is 
suggested. Applications of these results to speckle and photocdunting statistics are pre- 
sented. 

1. Introduction 

Among homogeneous Fredholm integral equations of the second kind, those whose 
kernel can be identified with an autocorrelation function play a very important role. 
They are the starting points for techniques like the Karhunen-Loeve expansion and the 
Kac-Siegert analysis (eg Davenport and Root 1958). As such, they are widely used in 
the realm of information processing of both electronic (Helstrom 1968) and optical 
(Frieden 1972) kind. The case of the sin x/x kernel has been thoroughly studied and 
its eigenfunctions and eigenvalues are well known (Slepian and Pollack 1961). Indeed, 
a lot of applications have been carried out by the use of such eigenfunctions or of their 
two-dimensional generalizations (Slepian 1964). On the other hand, little information 
is available for the case of the sin2x/x2 kernel, whose significance is particularly appreci- 
ated in optics (eg Goodman 1968). The corresponding integral equation, whose solutions 
are not analytically known, has been treated numerically or by perturbative methods 
so that numerical results and approximate solutions are available (Fedotowski 1972 
and Bendinelli et a1 1974). Furthermore, general upper and lower bounds for the 
eigenvalues have been found (Gori 1974). 

In this paper, we will give some additional results about the solutions pertaining to 
the sin2x/x2 kernel. First, we will prove that the eigenvalues are not degenerate. 
Secondly, we will establish an upper bound for the first eigenvalue (ie the eigenvalue 
of maximum modulus) that improves previously known bounds. This result suggests 
the introduction of an approximate formula for computing the eigenvalues. We will 
discuss such a formula and its validity. As an example, we will show the application 
of these results to speckle and photocounting statistics. 
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Throughout the paper, the following notation will be used : 

1 1x1 < 4 

1-14 1x1 < 1 

i o  1x1 > 4 

i o  1x1 > 1 

rect(x) = 

A(x) = 

sinc(x) = sin nx/nx. 

The symmetrical form of the Fourier transform will be used. Unless otherwise stated, 
the Fourier transform will be denoted by a tilde : 

f ( v )  = f ( x )  e-2nivx dx. 
- m  

Finally [XI means the largest integer less than or equal to x. 

2. Non-degeneracy of eigenvalues 

Let us consider the Fredholm homogeneous integral equation 
a i  2 

(3) 

For this equation a denumerably infinite set of eigenfunctions $“(x) corresponding to 
real and less than unity eigenvalues pn exists (Gori 1974). Both the eigenfunctions and 
the eigenvalues depend on the parameter a that we will term the space-bandwidth 
productt. We want to show that the eigenvalues are non-degenerate. This is relevant 
information when the eigenfunctions and the eigenvalues of equation (3) are used for 
physical applications. In a number of cases (eg image formation processes) the eigen- 
functions are identified with the degrees of freedom of a physical system each of them 
being characterized by a weighting factor (eigenvalue). If an eigenvalue exhibits a 
degeneracy of order n, the number of degrees of freedom to be associated with it equals n. 
Therefore, the existence of degeneracy must be known when the number of degrees of 
freedom of a system is evaluated through the eigenvalues. As another example, in 
statistical applications (see 4 4) the existence of degeneracy affects the structure of 
probability density functions. The demonstration of our thesis will be made for a 
general class of kernels, which includes sinc2(x). 

Indeed, let us consider the integral equation 

where the subscript n appearing in equation (3) has been dropped for the sake of simplicity, 
a is finite and K(x) is the inverse Fourier transform (FT) of an even real function p(v), 
defined in the interval ( -  v M ,  + vM), with p(v) + 0 when v -+ - v A  or v + +vi : 

vhf  

K ( x )  = J - v M  p(v) elnivx dv 

t The reader should be cautioned that authors using the asymmetrical form of Fourier transform, refer to a 
parameter c related to a by a = 2c/n. 
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so that K(x) is real and symmetric. v M  may be either finite or infinite. We observe 
that sinc'x belongs to the class of kernels described by equation (5) with p(v) = A(v) 
and v M  = 1. 

Let us also consider the kernel T(x) 

T(x) = vp'(v) eZrrivx dv. 

We maintain that the eigenvalues j i  of equation (4) are not degenerate when T(x) is 
definite (see Pogorzelski 1966 for the definiteness condition of a symmetric kernel). 
Indeed let us establish the following. 

Lemma 
No eigenfunction of equation (4) can simultaneously vanish at x = 4 2  and x = -a/2, 
when T(x) is definite. 

Proof 
Differentiation of equation (4), multiplication of both sides by x ~ ( x )  and integration in 
the interval (-a/2, al2) yields 

(7) 
d ai 2 ai2 ai2 

j i  J-.., x4(x)4'(x) dx = J - a / *  J - a i z  X4(X)4(Y)&K(X - Y) dx dY. 

Exploiting the symmetry of K(x), the right-hand side of equation (7) can be written as 

so that, performing the integration by parts on left-hand side of equation (7), we obtain 

Multiply both members in equation (4) by 4(x) and integrate in ( - 4 2 ,  4 2 ) .  If the 
resulting expression is inserted in left-hand side of equation (8), we obtain 

M x  - Y )  + (x (9) 

The kernel in large parentheses in equation (9), which can be written as 

is easily seen to coincide with - T(x-y) under the hypotheses previously given for p(v), 
so that equation (9) becomes 

4.7 o / z  

+pa(42(+a)+42(-+ta) )  = j-a/2 j-o/2 4(X)4(Y)T(X-.Y) dx dY' (10) 

It follows from equation (10) that 4(x) cannot vanish simultaneously in +$a, when 
T(x) is definite; thus the lemma is proved. 
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Observe that, exploiting equation (6), the following relation holds 

where $ T ( ~ )  is the FT of 4(x) truncated to  the interval ( - a/2, a/2). Relation (1 1) is useful 
to recognize whether T ( x )  is definite. Indeed &(v) is an analytic function and cannot 
vanish everywhere in the interval ( -  vy,  vy)  so that it will suffice that vp'(v) has a constant 
sign in order to have T(x) definite. In particular, it is easily seen that T ( x )  is definite 
when p(v) equals A(v), ie K(x) equals sinc2(x). Using this lemma, non-degeneracy is 
easily obtained. Let us first observe that if an eigenfunction 4(x) is to be neither even 
nor odd, both its even and odd parts, defined as 

satisfy integral equation (4), with the same eigenvalue. By the same argument as used 
by Slepian and Pollack (1961) with reference to the sinc kernel, if two degenerate 
eigenfunctions, an even one and an odd one, corresponding to the same eigenvalue 
exist, the following relation holds : 

so that one of them should vanish both at ++a. 
From this fact and from the lemma it follows that two degenerate eigenfunctions 

of this kind cannot exist; the preceding discussion also excludes existence of eigen- 
functions neither even nor odd. Finally, if there should exist two degenerate eigenfunc- 
tions both even (or odd), we could always find a linear combination of them with both 
coefficients different from zero, which is an eigenfunction and vanishes at &+a. But 
from the lemma this is impossible, and thus we can conclude that there must be non- 
degeneracy of eigenvalues for integral equation (4). 

3. Behaviour of the eigenvalues 

3.1. General remarks 

It is a known feature of equation (3) that its eigenvalues tend to decrease almost linearly 
with respect to the order index (Fedotowski 1972, Gori 1974, Bendinelli et a1 1974) 
and they become exceedingly small beyond a critical index equal to  [2a].  A rough 
approximation of this behaviour is given by the formula (Bendinelli et a1 1974): 

n 
2a p = I - -  n 5 2a 

Pn = 0 n 2 2a. 

This expression does not give the correct value of the eigenvalue sum, being 

(13) 

m 
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whereas the eigenvalue sum should equal the space-bandwidth product a (Gori 1974). 
Another approximate formula has been given by Fedotowski (1972) 

[2a] - n + 6 
[2a] + 1 n 6 [2al P” = 

Pn = 0 n > [2a] 

where 6 = a-i[2a]. This formula gives the correct result for the eigenvalue sum. 
Among eigenfunctions and eigenvalues, 40(x) and p o  have a special importance, 

because 40(x) is the only eigenfunction with constant sign within the interval (- a/2, a/2); 
this makes 40(x) of particular physical meaning (Bendinelli et a1 1974). As a consequence 
it is important to inquire about the dependence of p0 on the space-bandwidth product a. 
We observe that equation (13) gives a unity value for po regardless of a. According to 
equation (14), po increases from 0 to 1, when a ranges from 0 to CO. Nevertheless the 
increase law is oscillatory, whereas a monotone behaviour should be expected. In 
the following sectibn we will establish an upper bound for p o ,  which exhibits a monotone 
dependence on a and suggests another approximate law for the eigenvalue behaviour. 

3.2. Upper limitation for po 

For any function f defined in the space of functions square summable in the interval 
( -  a/2, 4 2 )  we can build the Rayleigh ratio 

where E = y!t,2. 1 f (x)l’ dx. The first eigenvalue po equals the maximum reached by 
the Rayleigh ratio (Riesz and Nagy 1955): 

Po = ma,-/ 

where the sinc’ function has been expressed through its FT A(v). 
The function f (x) is different from zero only in the interval ( - a/2,a/2). Therefore, 

its FT f ( v ) ,  which has f(x) as ‘spectrum’, is a band-limited function. As a consequence, 
J’(v) must satisfy the inequality (Papoulis 1968) 

1 a i2  4 2  1 

E -a/’  E - 1  
sinc’(x-y)f(x) f *(y) dx dy = ,axL s A(v)lf(v)l ’ dv (15) 

If(v)l’ < aE. (16) 

We now look for the function f ( v ) ,  which maximizes the Rayleigh ratio (15). Due to the 
shape of A(v) the function f ( v )  has to be mostly concentrated near the origin. On the 
other hand, If(v)12 cannot be greater than aE. Hence, the best shape for lf(v)12 would be 
approximately rectangular, centred on the origin, of height aE and limited within the 
interval ( -  1/2a, 1/2a). The last limitation follows from the Parseval theorem 

sp, I f ( v ) l Z  dv = E .  

Although this behaviour cannot hold, strictly speaking, for a band-limited function 
( f ( v )  is an analytic function and cannot vanish everywhere outside ( -  1/2a, 1/2a)), it 
surely gives an upper bound for the concentration of If(v)l’. Therefore, to get an upper 
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limit for p o  we have simply to calculate the Rayleigh ratio corresponding to this situation. 
Two cases are possible according to the value of a, as shown in figure 1. 

Computing p,, in the two situations we have: 
1 

A(v)aE dv = 1 -- 
4a 

l i t o  

(a 2 3) 
1 r l  

p o  < IJ A(v)aEdv = a (a  < t) .  
E - 1  

Equation (17) represents the limitation we were looking for. 

Figure 1. Best shape of Jf(v)I2 superimposed on A(v) for: A, space-bandwidth product a < 4: 
B,a > f. 

3.3. Behaviour of the eigenvalues 

The existence of the upper bound for p o  expressed by equation (17) suggests that, for 
a > i, the eigenvalues can be approximated by the formula 

1 n  
pn E 1---- n s [2a-+] 

4a 2a 

Pn 0 n 2 [2a-+]. 

Equation (18) incorporates the upper bound for p o  (when a > f). Furthermore, it 
satisfies the condition 

Comparison of values of pn computed numerically with values obtained from formula 
(18) shows also that this formula gives a better approximation than formula (13), without 
having the oscillatory feature of equation (14). This approximation, for a greater than 
some units, is better than 2 %, except for the last eigenvalue, ie the smallest, correspond- 
ing to n = [2a -+] .  

4. Application to photocounting and speckle statistics 

We now apply the preceding results to the classical analysis of Kac and Siegert (1947) on 
square-law detection of noise. Two different transcriptions of this analysis exist in the 
realm of optics. The first deals with the time intensity fluctuations of a Gaussian light 
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field (Mehta 1971) whereas the second refers to speckle statistics (Barakat 1973, Dainty 
1971). Here we adopt the language of speckle statistics but, of course, our results apply 
also to the first problem. 

Suppose a spatially coherent beam of quasi-monochromatic light is incident on a 
static diffuser (ground glass). We refer to the speckle intensity distribution Z(x) in the 
far-field in the one-dimensional case. Define the integrated intensity 

to take into account the finite aperture ( -42 ,  a/2) of the detector. Under the usual 
assumptions (Barakat 1973) the probability density of Z(x) is negative exponential, 
whereas the probability density for W depends on the field correlation function in the 
detector plane. The Kac-Siegert analysis leads to the following expression for the 
characteristic function pw(v) of Pw( W ) :  

where the 7, are the eigenvalues of the integral equation 
ai2 

yn+n(x) = j-a/2 4n(y)R(x, Y) dy. 

Here, R(x, y) is the correlation function for the field at the two points x and y in the speckle 
pattern. Fourier transformation of expression (19) leads to the probability density 
function Pw(W). If there is no degeneracy of the eigenvalues y n  the result is 

with 
-1 

c, = n.( S 1 -;) 
where ll’ means that s = n is excluded. Equations (21) and (22) give a mean value 

If some of the eigenvalues are degenerate, more cumbersome formulae are required 
(Barakat 1973). The limiting case is that in which only the first eigenvalue is appreciably 
different from zero and has a degeneracy of order N ,  all the other eigenvalues being 
exceedingly small. This case leads to the r distribution (Scribot 1974). 

w =  cny,. 

Let us refer to the case of a sinc2 correlation function 

R,(x, y) = sinc2(x-y) (23) 
where a constant proportionality factor depending on field intensity has been omitted. 
This kind of correlation function would be obtained in the far-field of a diffuser with an 
intensity transmission function of triangular shape. 

It has been shown in $ 2  that the eigenvalues of equation (3) are not degenerate. 
Therefore, we can use equations (21) and (22) to compute the probability density for the 
integrated intensity. As a reference case, we will also consider a correlation function 

(24) R2(x, y) = sinc(x- y) 
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that would correspond to a diffuser with an intensity transmission function of rectangular 
shape. In this case the eigenvalues are those of the prolate spheroidal wavefunctions. 
They are also non-degenerate (Slepian and Pollack l%l). The total area of the FT of 
both functions (23) and (24) is unity so that the space-bandwidth product a is the same 
for the two cases we are considering. 

With reference to the case of the R I  kernel, we first compare the results obtained 
through equations (21) and (22) when the exact eigenvalues of the sinc2 kernel are used 
and when the approximate formula (18) is used. Some curves are shown in figures 2 
and 3. They refer to the probability density of W /  W for a = 3.5 (figure 2) and a = 7 
(figure 3). Curves E give the exact results obtained by use of eigenvalues determined 
numerically by Bendinelli er al(1974), whereas curves A refer to the approximate results 
obtained by use of formula (18) for the eigenvalues. The differences between the exact 
and the approximate curves do not exceed a few per cent. As it was to be expected 
differences are lower for a = 7 than for a = 3.5. Without going into a detailed analysis 

Figure 2. Probability density function for a = 3.5. Curve E is obtained with exact results for 
eigenvalues 1"; curve A is obtained with approximate values from formula (18). 

Figure 3. Same as figure 2 for the case a = 7. 
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of the behaviour of these differences with respect to the value of a, we conclude that when 
a is of the order of some units or greater, the approximate formula can be used with an 
accuracy of a few per cent. 

Let us now compare the results with R ,  and R 2  kernels (see expressions (23) and 24)). 
An example is shown in figure 4. Curve T gives the probability density for W/ W when 
the diffuser has a triangularly shaped intensity transmission function (sinc2 correlation). 
The space-bandwidth product is a = 5.09 and the eigenvalues are computed through 

W /  R 
Figure 4. Probability density function for a = 5.09. Curve T for sine' correlation eigen- 
values; curve R for sinc correlation eigenvalues. 

the approximate formula (18), the exact eigenvalue being not available. Curve R refers 
to a diffuser with a rectangularly shaped intensity transmission function (sinc correlation). 
The space-bandwidth product is again a = 5.09 and the eigenvalues are those given by 
Slepian and Sonnenblick (1965). We see that curve T is more peaked near the mean 
value W /  W = 1 than curve R. The local difference between the two curves reaches 15 % 
and, therefore, cannot be ascribed to the use of the approximate formula (18) for the 
eigenvalues of sinc’ kernel. In figure 5 curve T (sinc’ kernel) for a = 3 is compared with 
two different curves R’ and R” (sinc kernel) corresponding to a = 3.8 and a = 4.5, 
respectively. Curve T is situated between the two curves R’ and R” so that, roughly 
speaking, curve T for a = 3 would match with a curve R corresponding to a N 4. From 
figures 4 and 5 we conclude that the probability density function we obtain for a given 
space-bandwidth product and the sinc’ kernel is similar to that we would obtain with 
the sinc kernel, provided the space-bandwidth product is suitably increased. A qualita- 
tive explanation of this result is as follows. The Kac-Siegert analysis is equivalent to 
representing the integrated intensity as a sum of independent random variables. Each 
variable has a negative exponential probability density with a mean value yn. For both 
the sinc and sinc2 kernels the eigenvalues become exceedingly small when their order 
index n is greater than a certain critical index (Slepian and Pollack 1961, Gori 1974). 
Such a critical index equals [a] for the sinc kernel, whereas it equals [2a] for the sinc2 
kernel. Therefore, discarding eigenvalues beyong the critical index, the integrated 
intensity W is given by the sum of [a] or [2a] independent variables for the sinc and 
sinc’ kernels, respectively. It is a well known feature of equation (21) that by increasing 
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Figure 5. Comparison between probability density functions obtained with sinc2 and sinc 
correlation eigenvalues. Curve R’ is for sinc correlation eigenvalues for the case a = 3.8. 
Curve R” is the same as R’, for the case a = 4.5 ; curve T for sinc’ correlation eigenvalues 
in the case a = 3. 

the number of non-negligible terms of the sum, the probability density for W tends to 
narrow near ( W / W )  = 1. This explains why in figure 4 curve T is more peaked near 
( W / W )  = 1 than curve R. Analogous considerations can be applied to figure 5 .  In this 
elementary explanation we did not take into account that the eigenvalues of the sinc2 
kerenel decrease almost linearly with their order index before the critical index [2a] is 
reached, whereas the eigenvalues of the sinc kernel are nearly equal to each other for 
indices smaller than the critical index [a] .  As a matter of fact, the increase from [a] to 
[2a] non-negligible eigenvalues seems to be the main factor that affects the probability 
density function. The dependence of the probability densities for integrated intensity 
on the shape of the kernel R has been subjected to previous investigations (Barakat 
1973, Mehta and Mehta 1973) with reference to sinc, Gaussian and negative exponential 
kernels. 

Further work is required to  coordinate all these results and to proceed to a critical 
investigation which could arrive at general conclusions. 

This is beyond the aim of this paper ; we do not dwell on this matter here. 
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